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Level-1
Prim:  88K
SSIM: 0.39
Time: 01:00
Iteration: 1,000

Level-2
Prim:  910K
SSIM: 0.44
Time: 04:00
Iteration: 4,000

Level-3
Prim:  2,061K
SSIM: 0.54
Time: 08:00
Iteration: 8,000

Level-4
Prim:  3,175K
SSIM: 0.64
Time: 13:00
Iteration:12,000

Level-5
Prim:  4,187K
SSIM: 0.73
Time: 40:00
Iteration:30,000

3DGS
Prim:  5,658K
SSIM: 0.74
Time: 48:00
Iteration:30,000

Figure 1: Top: RGB rendering. Middle: Gaussian Visualization. Bot-
tom: Size, SSIM, cumulative training time and global iteration. Each
column indicates one level of detail used in our coarse-to-fine optimiza-
tion and the last column shows 3DGS for comparison.

Introduction: 3D Gaussian Splatting (3DGS) [1] is an explicit point-
based novel view synthesis technique that achieves high visual quality and
fast training times. However, 3DGS suffers from high memory and stor-
age usage [3, 4] limiting its applicability across various device form fac-
tors. In this context, we introduce a novel and efficient 3DGS coarse-to-
fine optimization strategy. Our method reduces the memory overhead of
3DGS by initiating the training process with significant over-reconstruction,
which serves as an effective regularizer, and progressively refines the
scene representation. Our approach also produces stand-alone scene rep-
resentations at each level-of-detail in the progressive refining process, en-
abling variable storage, transmission, and rendering based on the down-
stream requirements.
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Figure 2: Our frequency modulation and progressive Gaussian levels-of-
details method diagram.

Method: We employs a progressive frequency control strategy with
five distinct image and scene quality levels In and Gn respectively in range
n = (1− 5) as depicted in our method diagram shown in Figure 2. We
start by applying the blur with a large kernel size to the training images,
reducing their detail and noise. This initial reduction in detail allows the
model to focus on learning the broader, more significant structures of the
scene. As the training progresses, the level of blur is gradually reduced
by reducing the size of the blur filter which reintroduces higher frequency
details in a controlled manner.

The optimization starts from sparse initial 3D points obtained from
structure from motion (SfM)[5] on the training images I and this acts as
our input at G1 as shown in Figure 2. Then for each subsequent level in
our coarse-to-fine optimization process we use the last set of Gaussians
Gn−1 as the starting point and the 3DGS[1] optimization loss is used to
optimize Gn−1 using the filtered images I in range n = (1− 5). Where
the images In are obtained from our frequency modulation function. For
each level the images get progressively sharper and more high frequency
content is allowed to remain in the image. For the last level at n = 5 used
we directly pass the orignal training images to the 3DGS optimizer.

Results: Our method reduces the number of primitives required by
62%, lowers GPU memory usage by 40% and reduces optimization time
by 20% as shown in Figure 3. Our method successfully reconstructs sub-
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Figure 3: Shows optimization time, GPU memory usage, number of
Gaussian primitives and PSNR for our method compared to 3DGS[1].

Table 1: Quantitative results for our method on commonly used bench-
mark datasets.

Mip-NeRF360
Method SSIM ^ PSNR ^ LPIPS _ Size (MB) _

Plenoxels 0.626 23.080 0.463 2,100.0
INGP-Base 0.671 25.300 0.371 13.0
INGP-Big 0.699 25.590 0.331 48.0

Mip-NeRF 360 0.792 27.690 0.237 8.6
3DGS 0.815 27.210 0.214 734.0

Reduced-3DGS[4] 0.809 27.100 0.226 29.0
Compact-3DGS[2] 0.797 27.030 0.247 29.1
Compress-3DGS[3] 0.801 26.981 0.238 28.8

Ours-Full 0.797 26.777 0.256 15.87
Tanks & Temples

Plenoxels 0.719 21.080 0.379 2,300.0
INGP-Base 0.723 21.720 0.330 13.0
INGP-Big 0.745 21.920 0.305 48.0

Mip-NeRF 360 0.759 22.220 0.257 8.6
3DGS 0.841 23.140 0.183 411.0

Reduced-3DGS[4] 0.840 23.570 0.188 14.0
Compact-3DGS[2] 0.831 23.320 0.202 20.9
Compress-3DGS[3] 0.832 23.324 0.194 17.3

Ours-Full 0.819 23.061 0.224 9.93
Deep Blending

Plenoxels 0.795 23.060 0.510 2,700.0
INGP-Base 0.797 23.620 0.423 13.0
INGP-Big 0.817 24.960 0.390 48.0

Mip-NeRF 360 0.901 29.400 0.245 8.6
3DGS 0.903 29.410 0.243 676.0

Reduced-3DGS[4] 0.902 29.630 0.249 18.0
Compact-3DGS[2] 0.900 29.730 0.258 23.8
Compress-3DGS[3] 0.898 29.381 0.253 25.3

Ours-Full 0.898 29.350 0.268 12.02

tle details like grass and shrubs all the while using fewer Gaussian prim-
itives. The proposed method is combined with an off-the-shelf compres-
sion method [3] to obtain further compression and to showcase the general
nature of our contribution.

Applications: Our approach enables efficient and usable optimiza-
tion of 3DGS up to the highest resolution level-of-detail before running
out of GPU memory. A scene can be rendered at a different level-of-detail
depending on device hardware and user requirements. We also enable
downstream applications where parts of a scene can be rendered in vari-
able quality which can further decrease memory footprint and increase
render speed.
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